

BASF, one of the largest and most prestigious multinationals in the chemical sector, has committed to additive manufacturing through the Forward-AM brand and its Ultrasint, Ultrafuse and Ultracure lines. It currently has an extensive catalogue of materials for the main 3D printing technologies, including its excellent engineering resins based on urethane, or its metallic filaments.
Ultrafuse 17-4PH is an FFF 3D printing filament composed of 90% by weight of sinterable 17-4PH steel powder and 10% binder polymers developed specifically to facilitate the extrusion of this material.
Grade 17-4PH or type 630 steel is a martensitic stainless steel alloyed with chromium and copper, which is noted for its high mechanical strength. This steel can be precipitation hardened to achieve superior strength and hardness. Compared to 316L steel, it has higher mechanical properties at the cost of lower corrosion resistance.
Unlike other PLA-based metal filaments where the debinding process is performed thermally in conjunction with sintering, Ultrafuse 17-4PH uses a specific binder polymer that requires catalytic debinding developed by BASF. This catalytic process has the advantage of being much cleaner than the calcining of PLA, reducing the waste present during sintering and resulting in a final part free of impurities and with properties closer to those of machined or injected steel.
This filament has similar printing conditions to ABS, so it can be used in most FFF 3D printers. In addition, the binders used have been developed to minimise the brittleness characteristic of metallic filaments, which facilitates its use in both direct extruder and bowden printers and does not require heating prior to printing. It is available in 1 kg and 3 kg spools and in 1.75 mm and 2.85 mm diameters.
Ultrafuse 17-4PH has been developed with the aim of simplifying and reducing costs in the 3D printing of metal parts. This is why, as in the case of Ultrafuse 316L, this filament is eligible for the debinding and sintering service provided by ELNIK. This service is based on the purchase of coupons, where each coupon entitles the customer to the post-processing of 1 kg of parts. Each voucher covers the debinding and sintering process as well as the shipping and return of the parts. The only factor to take into account is that the pieces must have dimensions of 100 x 100 x 100 x 100 mm or less.
For those users who have the means and want to carry out the debinding and sintering process, BASF provides the parameters and conditions for both processes which can be consulted in the tips for use tab or in the user guide available in the download tab.
BASF Ultrafuse metal filaments make it possible for anyone to 3D print high-quality parts in steel. All that is required is an FFF 3D printer capable of printing ABS and the purchase of a spool of filament and coupons. One spool of Ultrafuse 17-4PH and one coupon is enough to produce up to 1 kg of parts.
Ultrafuse Support Layer, Ultrafuse 17-4 PH and Ultrafuse 316L can be 3D printed with great results on the Forge 1 metal 3D printer developed by Raise3D as part of the MetalFuse solution. MetalFuse consists of the Forge 1 3D printer, the D200-E debinding furnace and the S200-C sintering furnace, and allows for the in-house manufacturing of metal parts with the Ultrafuse metal filaments, resulting in a fully metallic part.
General information |
|
Manufacturer | BASF |
Material | Metal + binder |
Format | 1 kg / 3 kg |
Density | - g/cm³ |
Filament diameter | 1.75 / 2.85 mm |
Amount of filler (volume) | - % |
Amount of filler (mass) | 90 % |
Printing properties |
|
Printing temperature | 230 - 250 ºC |
Print bed temperature | 90 - 120 ºC |
Recommended printing speed | 15 - 50 mm/s |
Recommended nozzle | Hardened Steel |
Recommended nozzle diameter | Min. 0.4 mm |
Mechanical properties |
|
Elongation at break | - % |
Tensile strength | - MPa |
Tensile modulus | - MPa |
Flexural strength | - MPa |
Flexural modulus | - MPa |
Surface hardness | - |
Thermal properties |
|
Softening temperature | - ºC |
Specific properties |
|
Radiation protection (without sintering) | - |
Sintering properties |
|
Container | Refractory crucible |
Refractory powder | Al2O3 99.6 % |
Maximum temperature | 1300 ºC |
Other |
|
HS Code | 7406.1 |
Se debe evitar el uso de soportes siempre que sea posible. En caso de que sea necesario usarlos, estos deben realizarse en el mismo material y con una densidad igual o superior al 70%.
Durante el debinding y sinterizado, la pieza sufre una contracción del 16% en XY y del 20 % en Z, por lo que se debe redimensionar las piezas para compensar esta merma.
Se recomienda usar los siguientes parámetros de impresión:
Tamaño de nozzle | 0.4 mm |
Factor de extrusión | 1.0 - 1.1 |
Ancho de extrusión | 0.35 mm |
Distancia de retracción | 1.5 mm (directo) / 5 mm (bowden) |
Velocidad de retracción | 45 mm/s |
Altura de caoa | 0.1 - 0.15 mm |
Perímetros | 1 - 2 |
Relleno | 100 % |
Superposición de relleno sobre perímetros | 20 - 35 % |
Ancho de extrusión de relleno | 100 % |
Temperatura de impresión | 230 - 250 ºC |
Temperatura de base | 90 - 120 ºC |
Ventilador de capa | Apagado |
Velocidad de impresión | 35 mm/s |
Los filamentos metálicos Ultrafuse son susceptibles de sufrir warping, por lo que se recomienda aplicar Magigoo Pro Metal en la base y evitar corrientes de aire en el entorno de la pieza.
Estos filamentos tienden a adherirse al nozzle y al bloque calefactor por lo que es necesario limpiarlos tras cada impresión.
Antes del sinterizado, las piezas se deben someter a un debinding catalítico para eliminar los aglutinantes. Este consiste en un proceso termoquímico en el cual las piezas se someten a una corriente de ácido nítrico gaseoso dentro de un horno con atmósfera inerte de nitrógeno. El proceso se debe llevar a cabo a 120 ºC con una corriente de ácido nítrico de 30 mL/h*.
Tras el debinding es necesario aplicar un sinterizado para obtener las propiedades finales y eliminar la porosidad de la pieza.
El proceso de sinterizado debe realizarse en atmósfera de nitrógeno seco o argón de alta pureza. El soporte refractario debe ser polvo de alúmina con una pureza superior a 99.6%.
Un ejemplo de ciclo de sinterizado es el siguiente: