

Mischungen aus Nylon und Kohlenstofffasern sind eine sehr beliebte Lösung in der additiven Fertigung, da diese spezielle Mischung einzigartige Eigenschaften bietet, die in vielen Bereichen gewünscht werden. Das Ultrafuse PAHT CF15 Filament aus dem BASF-Portfolio an verstärkten Filamenten ist ein Beispiel für eine solche Mischung. Es ist ein hochleistungsfähiges Filament für den 3D-Druck, das eine hohe Temperatur- (bis zu 150 ºC) und Chemikalienbeständigkeit (besser als die meisten PA-Typen) in Kombination mit einer hervorragenden mechanischen Belastbarkeit bietet.
Nylon (PA) ist ein Polymer, das für eine Reihe hervorragender Eigenschaften bekannt ist, wie hohe thermische Stabilität, Festigkeit, chemische Beständigkeit und Zähigkeit. In Kombination mit Kohlenstofffasern entsteht ein Filament mit geringerem Gewicht, höherer Steifigkeit und verbesserter chemischer Beständigkeit. Darüber hinaus lassen sich mit Kohlenstofffasern verstärkte Filamente in der Regel besser drucken, da sie während des Drucks eine geringere Schrumpfung aufweisen. Da das Ultrafuse PAHT CF15 Filament Kohlenstofffasern (15 %) enthält, ist es für Standarddüsen abrasiver. Deshalb sollte eine abriebfeste Düse verwendet werden, z. B. eine Düse aus gehärtetem Stahl oder eine Rubindüse mit einem Durchmesser von mindestens 0.6 mm.
In Kombination mit einem Stützfilament kann das Ultrafuse PAHT CF15 Filament für den 3D-Druck komplexer Strukturen und Geometrien verwendet werden, die in thermisch oder chemisch anspruchsvollen Umgebungen eingesetzt werden sollen. Die empfohlenen Trägermaterialien sind das wasserlösliche Ultrafuse BVOH-Trägermaterial sowie Ultrafuse HIPS. Es sollte beachtet werden, dass für den 3D-Druck mit Trägermaterialien ein 3D-Drucker mit mindestens 2 Extrudern erforderlich ist.
Dank der einzigartigen Kombination von thermischen, mechanischen und chemischen Eigenschaften kann das BASF Ultrafuse PAHT CF15 Filament in zahlreichen Anwendungen eingesetzt werden, zum Beispiel für den 3D-Druck von Teilen, die eine gleichbleibende mechanische Festigkeit und Elastizität aufweisen müssen, während sie gleichzeitig in Umgebungen mit hohen Temperaturen und in Gegenwart von ätzenden Stoffen oder Lösungsmitteln arbeiten können. Das Ultrafuse PAHT CF15 Filament lässt sich leicht verarbeiten und kann für das Prototyping, den Werkzeugbau sowie für die Endproduktion im Automobilsektor verwendet werden, dank seines geringen Gewichts sogar als Ersatz für leichte Aluminiumteile.
Außerdem ist das PAHT CF15 Ultrafuse Filament kompatibel mit hohen Druckgeschwindigkeiten. Um komplexe Strukturen mit diesem Material und einem Stützmaterial zu erstellen, werden das lösliche Stützmaterial Xioneer VXL 90 oder das lösliche Stützmaterial VXL 111 vom Hersteller empfohlen. Diese Stützmaterialien können ebenfalls mit hohen Geschwindigkeiten extrudiert werden, was einen reibungslosen und effizienten 3D-Druck bedeutet. Die Wasserlöslichkeit des VXL 90/111 macht die Nachbearbeitung präziser und schneller. In der Downloads-Sektion kann eine Tabelle mit Kompatibilitäten zwischen den BASF Ultrafuse und Xioneer Stützfilamenten eingesehen werden.
Allgemeine Informationen |
|
Material | PA |
Format | 0.75 kg |
Dichte | 1.23 g/cm³ |
Durchmesser des Filaments | 1.75 / 2.85 mm |
Filament-Toleranz | - mm |
Länge des Filaments | (Ø 1.75 mm - 750 g) ±253.5 m / (Ø 2.85 mm - 750 g) ±95.6 m |
Druckeigenschaften |
|
Drucktemperatur | 260 - 280 ºC |
Basis-/Betttemperatur | 100 - 120 ºC |
Temperatur in der Kammer | ✗ |
Schichtlüfter | ✗ |
Empfohlene Druckgeschwindigkeit | 30 - 80 mm/s |
Elektrische Eigenschaften |
|
Volumetrischer Widerstand | (IEC 62631-3-1) 3.2E+07 Ω/cm |
Elektrischer Oberflächenwiderstand | (IEC 62631-3-2) 9.7E+05 Ω |
Mechanische Eigenschaften |
|
Izod-Schlagzähigkeit | (ISO 180) (notched) 4.9 / (unnotched) 16.4 KJ/m² |
Charpy-Schlagzähigkeit | (ISO 179-2) (notched) 4.8 / (unnotched) 20.6 KJ/m² |
Dehnung bei Bruch | (ISO 527) 1.8 % |
Zugfestigkeit | (ISO 527) 103.2 MPa |
Zugmodul | (ISO 527) 8386 MPa |
Biegefestigkeit | (ISO 178) 160.7 MPa |
Biegemodul | (ISO 178) 8258 MPa |
Oberflächenhärte | - |
Thermische Eigenschaften |
|
Schmelztemperatur | (ISO 11357-3) 234 ºC |
Erweichungstemperatur | (ISO 75-2 @ 0.45 MPa) 145 ºC |
Spezifische Eigenschaften |
|
Chemische Beständigkeit | ✓ |
Andere |
|
HS Code | 3916.9 |
Spulendurchmesser (außen) | 200 mm |
Spulendurchmesser (innen) | 50.5 mm |
Spulenbreite | 55 mm |
Das Ultrafuse PAHT CF15 Filament sollte richtig gelagert werden. Vor und nach dem Drucken sollte es in der Originalverpackung oder in einem vakuumversiegelten Beutel aufbewahrt werden, mit einer Filament-Trockenkapsel in der Spule. Eine gute Alternative ist ein intelligenter Filament-Behälter. Während des Druckens kann die Spule in einem Filament-Trockenkoffer oder einem Inline-Filament-Trockner aufbewahrt werden. Sollte das Ultrafuse PAHT CF15 Filament Feuchtigkeit aufnehmen, sollte es in einem Heißlufttrockner (70 ºC für 4-16 Stunden) oder in einem Vakuumofen (80 ºC für mindestens 40 Stunden) getrocknet werden. Diese Maßnahmen gewährleisten die Verdruckbarkeit des Filaments und die Erhaltung der Eigenschaften der gedruckten Teile.
Das Ultrafuse PAHT CF15 Filament sollte bei 260-280 ºC ohne Schichtlüfter und mit einer Geschwindigkeit von 30-80 mm/s gedruckt werden. Die empfohlene Betttemperatur beträgt 100-120 ºC und die ideale Druckoberfläche ist sauberes Glas oder eine PEI-Druckoberfläche .
Aufgrund der im Filament enthaltenen Kohlenstofffasern sollte für das Ultrafuse PAHT CF15 Filament eine Düse aus gehärtetem Stahl oder mit Rubinspitze mit einem Durchmesser von mindestens 0.6 mm verwendet werden. Die Verwendung einer Standarddüse führt zu einem beschleunigten Verschleiß der Düse und sogar zu einer Veränderung des Durchmessers im Laufe der Zeit. Dies führt zu Unregelmäßigkeiten in der Oberfläche und den Eigenschaften des 3D-Druckteils.