Filamet tungsten
search
You must be logged in to manage your wishlist.

Rapid 3DShield Tungsten filament TVF

TUNGSTEN-TVF-175-500
455.00 € 455.00 €
Tax excl.
Diameter
Format
Quantity

In stock 5 units available for immediate shipping.
units available for shipping in 0 - 0 days
Available for shipment within 0 - 0 days

Product temporarily out of stock with these characteristics. Select another combination.

Product temporarily out of stock with these characteristics. Select another combination.

We notify you when it will be available:

Approximate delivery date: Monday 16 September

Rapid 3DShield Tungsten from The Virtual Foundry (TVF) is an innovative filament composed of 91-93 % metal and the rest by PLA. The Virtual Foundry is an American company formed by great experts in the sector of molten metal, which have been constantly working since 2014 to improve and grow its range of filaments and accessories for 3D FDM metal printing. Its products are oriented to solve and simplify problems through innovative metallic materials for 3D FDM printers of any kind.

Collimator made of sintered tungsten

Image 1: Collimator made of sintered tungsten. Source: The Virtual Foundry

Tungsten is a metal of high density, high hardness, with the highest melting point (3422 °C) of all metals and the highest boiling point (5930 °C) of all materials. This set of properties makes tungsten ideal for the manufacture of filaments of incandescent lamps, electrical resistors, welding electrodes and other elements subject to high operating temperatures. Thanks to its compact molecular structure (BCC), tungsten is ideal for the manufacture of shields, both rod-shaped and plate-shaped, against all types of radiation (gamma and neutron rays), with superior protection power to lead, without producing the typical toxicity released by this heavy metal. The military sector uses this material to a large extent since World War II due to its high density and hardness, ideal properties to manufacture armor for vehicles (land and air) and projectile points that are intended to attack tanks and airplanes. Its applications do not end here, tungsten alloys are commonly used in high-speed cutting tools, pen tips, fluorescent tubes, jewelry items and ceramic pastes.

Rapid 3DShield Tungsten has the highest density of all existing filaments, even higher than GMass™, allowing parts to be made up to 4 times heavier than with conventional materials (PLA or ABS). Tungsten, despite belonging to the group of heavy metals, such as lead, is completely safe and non-toxic, being able to use and store this filament normally, without the need for any special safety equipment.

A remarkable application of Rapid 3DShield Tungsten (without sintering) is the impression of radiation shielding vessels (150 kva). These types of containers are used to transport radioactive medications without having to resort to lead (toxic) containers. Thanks to the density of tungsten, 1.6 higher than lead, this filament is ideal for creating any type of replacement part made from lead.

As with all Filamet™ metallic filaments, when printing Rapid 3DShield Tungsten, the user must take into account that a stainless steel nozzle should be used, but due to the high density of tungsten, a nozzle diameter up to 0.3 mm that allows parts to be made in great detail, can be used.

The Virtual Foundry has been the pioneer in developing metallic filaments for 3D printing after many years of research and development. The great competitive advantage developed is that to obtain the pure metal parts it is only necessary to print the piece and sinter it in an oven. Other manufacturers that have tried to develop metallic filaments need to do one more process (prior to sintering in the furnace) which is the debinding that consists of a chemical process to separate the binder polymers from the metal. Therefore, it can be concluded that The Virtual Foundry is the pioneer and the benchmark in 3D metal FDM printing, obtaining a fairly simple process with results never seen so far in the world of metal fabrication.

Currently, a large list of industry sectors are using The Virtual Foundry filaments: 3D printer manufacturers, biomedical innovation, jet engine development, radiation shielding (150 kva), space exploration, nuclear energy, dental, artists or fashion design. A remarkable application is the manufacture of a drill with internal hot water heating, for drilling in the Antarctic. With the Filamet™ copper it has been manufactured very easily and at a low cost, a drill with an internal structure extremely difficult to machine or mold has been manufactured very easily and at a low cost.

Rapid 3DShield Tungsten is a filament formed by base metal and a biodegradable and ecological polymer (PLA). This material is free of exposed metal particles and volatile solvents that can be released during printing. Formed by 91-93 % tungsten and the rest by PLA, this material is extremely simple to print, since its printing properties are similar to those of the PLA, which allows any user of a FDM 3D printer create parts with this filament, without the need to buy expensive industrial 3D FDM metal printers. With Rapid 3DShield Tungsten properties similar to those possible with DMLS technology are achieved but with certain limitations. Due to the need to sinter the printed pieces with this filament, where the PLA is removed, the pieces have porosity, loss of volume and non-isotropy. DMLS 3D printers manage to print totally solid parts (similar to the foundry), in great detail, layer heights of 0.02 mm and without the need for post-processing, the only disadvantage compared to Filamet™ 3D FDM printing the cost of: material, manufacturing and the printers themselves.

Precision part made of sintered Rapid 3DShield Tungsten

Image 2: Precision part made of sintered Rapid 3DShield Tungsten. Source: The Virtual Foundry

Due to its large metal content (91-93 %), it is necessary to place the filament inlet as aligned as possible with the extruder. Once a piece is printed, it is necessary to carry out the sintering process, in an open environment or in a vacuum or inert environment, to eliminate the polymer (PLA), taking into account that sintering values must be adjusted depending on the geometry and oven model. The product that is obtained is totally metallic, with the real properties of the metal as electrical conductivity, post-processed by sanding and polishing or even welding union; but with a certain porosity and a reduction in volume due to the loss of PLA. To know more about the whole process of printing, sintering and post-processing you should visit the "Tips for Use" section.

Users who do not have an kiln with the necessary properties to sinter the printed parts with the Rapid 3DShield Tungsten and get the final properties of this metal, can contact us and we will assess its viability through our collaborators with ability to perform the post-processing necessary to obtain the desired final result.

General information

Manufacturer The Virtual Foundry
Material Metal + binder
Format 500 g
Density 7.8 g/cm³
Filament diameter 1.75 / 2.85 mm
Filament length (Ø 1.75 mm - 0.5 kg) ± 26.7 m / (Ø 2.85 mm - 0.5 kg) ± 10 m
Amount of filler (volume) 66 %
Amount of filler (mass) 91-93 %

Printing properties

Printing temperature 205 - 215 ºC
Print bed temperature 50 ºC
Recommended printing speed 30 mm/s
Recommended nozzle Stainless steel
Recommended nozzle diameter Min. 0.3 mm

Mechanical properties

Elongation at break - %
Tensile strength 21.4 MPa
Tensile modulus 5820 MPa
Flexural strength 47.3 MPa
Flexural modulus 4620 MPa
Surface hardness -
Impact strength 23.75 KJ/m²

Thermal properties

Softening temperature 80 ºC

Specific properties

Radiation protection (without sintering)

Sintering properties

Refractory powder -
Maximum temperature - ºC

Other

HS Code 8101
Spool diameter (outer) 300 mm
Spool diameter (inner hole) 65 mm
Spool width 55 mm

PRINTING TIPS

Due to the high quantity of metal, the filament can be broken more easily than a conventional PLA filament. To avoid breakage during printing, it is recommended to use Filawarmer, an accessory that preheats the filament before printing to reduce its fragility and increase its malleability.

It is necessary to use a hardened nozzle of at least 0.6 mm diameter to avoid jamming.

As far as infill, the average recommended amount is 30-70 % but it largely depends on what kind of part the user wants to obtain and whether the part will be sintered or not. For more indepth information please watch this video:

Video 1: The recommended infill for the TVF materials. Source: TVF.

It is recommended to print on a glass base and use an adhesive such as Magigoo. It is not possible to print directly on PEI bases, as the part could be welded to the base and the base would be damaged. If you have a PEI base, we recommend applying a layer of Blue Tape.

Printing at low speeds of up to 30 mm/s is recommended.

SINTERING PROCESS

This filament is in an experimental phase, so an optimised sintering procedure is not yet available.

Featured properties

Printing temperature
205 - 215 ºC
Filament diameter
1.75 / 2.85 mm
Density
8 g/cm³

Related products