• $options.id_post:
  • $options.slug:
  • https://filament2print.com/gb/blog/_.html
  • es
  • gb
  • pt
  • fr
  • de
  • PEKK 1,75mm View larger



    Temporarily out of stock

    New product

    289,00 €
    289,00 €

    Ask for information

    Advanced material used to make mechanically resistant parts, resistant to chemical elements and fireproof.

    The PEKK (PolyEtherKetoneKetone) is considered an advanced engineering polymer that belongs to the PAEK family. The PEKK has earned a place among the most powerful materials within 3D printing FDM / FFF, among which are the PEKK CF, the PEI and the PEI CF. In addition, this material competes at a general level with the most widely used thermoplastics in the engineering industry (polysulfones, polyphenylene sulphides and polyketones).

    Relying on the vast experience and many years of research, the great French manufacturer Nanovia has obtained the PEKK JNM 2712. The JMN 2712 behaves in a stable manner in all areas that allows its use in a 3D printer FDM. Next, the molecular structure of JNM 2712 is observed.

    JNM 2712

    Image 1: PEKK JNM 2712. Source: Nanovia

    The PEKK filament presents all the qualities that an advanced material requires. The thermal resistance is quite high compared to the most common materials of 3D printing, having a glass transition temperature of 180°C and a melting temperature of 300°C. The main advantage, with respect to other materials (NylonStrong), is that at these temperatures the mechanical properties hardly change. This is because its great dimensional stability maintains the structural shape even when raising the temperature, something unthinkable with the majority of existing materials in 3D FDM / FFF printing. These qualities are used to make short cycle injection molding tools, carbon fiber lamination tools and other types of molds that are subject to high pressure and temperature values (Autoclave). Within this type of high strength molds are those used for the vulcanization process of plastics, such as rubber. Thanks to PEEK molds can be made faster, easier and cheaper than current steel molds.

    The main advantage of this material with respect to others of the same family is that the chemical resistance. The values of resistance to chemical elements are superior even to those of PEI and PEI CF. PEKK is resistant to a large list of fluids: halogen hydrocarbons (benzene), automotive fluids (coolant), alcohol and aqueous solutions (sea water). This quality, together with its low density (1.27 g / cm3) and fireproof material, makes PEKK a very common material to make final parts of engine parts in the field of aeronautics and the automotive industry through which liquids pass, oils and gases.

    Something very important when it comes to manufacturing parts for engineering is that it doesn't interfere or produce derivations of electric currents. The PEKK has a high dielectric stability (resistance to transforming an electrically insulating material into conductive) and can manufacture insulating parts for electronic circuits or housings for electrical outlets. In particular, the application of this material in electronic circuits is ideal to ensure the operation, since the PEKK is a material with a large capacity of heat dissipation and frequency.

    In the section of mechanical properties, the PEKK stands out when gathering high values of resistance in all fields. The Young Module (Traction Module) of the PEKK (2900 MPa) is superior to that of the technical materials of 3D printing by more than 30%; Nylon-Carbon Fibre CF15 (500 MPa), PC-Max (2048 MPa), Nylon PolyMide COPA (2223 MPa). The Flex Module of the PEKK is 3000 MPa, again surpassing all conventional and technical 3D printing materials;; Nylon PolyMide COPA (1667 MPa), ABS Premium (2000 MPa), PC-Max (2044 MPa). If you need a material with higher mechanical strength values, it's recommended to use PEI, PEI CF, GF30-PP or GF30-PA6.

    Elongation at break (%) 5.4
    Tensile strength (MPa) 128
    Tensile modulus (MPa) 2900
    Flexural strength (MPa) 128
    Flexural modulus (MPa) 3000
    Softening temperature (ºC) 139
    Machinable Machinable
    Vibration resistance Vibration resistance
    Electric insulator Electricity insulator
    Fireproof Fireproof
    Moisture resistance Moisture resistance
    Chemical resistance Chemical resistance
    Hide color variations (Hide color variations)

    To use the PEKK you need a great experience in the sector of 3D printing and a 3D printer qualified for it, since it requires an extrusion temperature of 370-400ºC, a base temperature of 150ºC and a chamber temperature of 80ºC, that is why it is recommended to use industrial 3D printers such as 3NTR A2 or 3NTR A4 that meet all the requirements. To ensure a good adhesion to the printing base, it is recommended to use a PEI sheet to avoid the warping effect.


    During the printing of the desired parts with PEKK internal stresses are generated, as in any type of plastic, which can be transformed into unwanted breaks or deformations. Eliminating these tensions is very simple and you only need a hot air oven and follow the following 5 steps:

    1º- Place the pieces in the oven at room temperature (20ºC).

    2º- Heat the oven at 150ºC for 1 hour.

    3º- Once spent 1 hour, raise the temperature to 200ºC and let one more hour pass.

    4º- Lower the temperature again at 150°C for 30 minutes.

    5º- Once the 30 minutes have passed, the oven is turned off and the pieces inside the oven are allowed to cool to room temperature.

    This process must be carried out by qualified personnel.

    General information
    Manufacturer Nanovia (France)
    Material PEKK
    Format Pack of 50 g
    Spool of 500 g
    Density 1.27 g/cm3
    Diameter of filament 1.75 or 2.85 mm
    Diameter tolerance ±0,05 mm
    Filament length ±163 m (Ø 1.75 mm-0.5Kg)
    ±61 m (Ø 2.85 mm-0.5Kg)
    Color Natural
    RAL/Pantone  -
    Print settings
    Printing temperature 370-400ºC
    Print bed temperature 150ºC
    Chamber temperature 80ºC
    Cooling fan Not recommended
    Recommended printing speed 40-100 mm/s
    Nozzle diameter >0.4 mm
    Mechanical properties
    Izod impact strength -
    Charpy impact strength -
    Elongation at break (ISO 527) 5.4%
    Tensile strength -
    Tensile Modulus (ISO 527) 2900 MPa
    Flexural strength (ISO 178) 128 MPa
    Flexural modulus (ISO 178) 3000 MPa
    Surface hardness -
    Thermal properties
    Softening temperature (ISO 306) 139ºC
    Melting temperature 305ºC
    Inflammability (UL 94 @0.8mm) V-0 Class
    Specific properties
    Transparency  -
    Additional Information
    HS Code 3916.9
    Spool Diameter (outer) 200 mm
    Spool Diameter  (inner hole) 52 mm
    Spool Width 55 mm

    * The typical values detailed in this table should be considered as a reference. Actual values may vary depending on the 3D printer model used, part design and printing conditions. We recommend confirming the results and final properties with own tests. For more information you should consult the technical data sheet of the product.

    30 other products in the same category: