mayku.me

Mayku Guides Industrial Designers

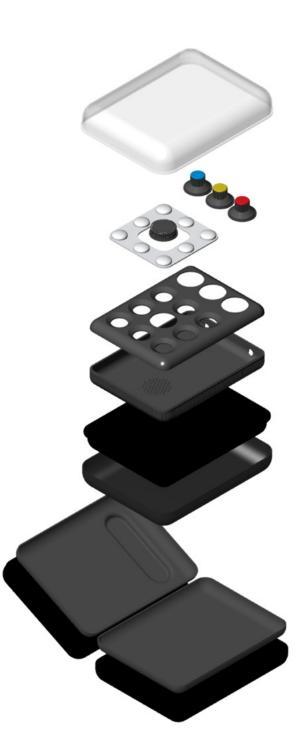
Save money and time on product development with the Mayku FormBox



Contents

- From prototyping to production
 How the FormBox can benefit your business
- How to guides
 Learn how to make with the FormBox
- Design guidelines
 Designing for the FormBox
- The numbers Exactly how much money and time the FormBox can save you

From prototyping to production



Vacuum forming is a powerful tool for model-makers, product designers and industrial engineers. The FormBox can help you reduce your lead time on parts, save money and speed up your development cycle. In this guide you will learn how to:

- Create product casings with different material finishes
- Cast small batches of precision parts in silicone and resin
- Create custom housings for electronics
- Work with transparent materials such as polycarbonate
- Create professional grade packaging from your desktop
- Work with flexible materials
- Manufacture short runs of working products for user testing

From method to melody

Making short runs of production-level machines quickly and cheaply: Each part of this fully functioning synthesizer was made using the FormBox

CAD to reality in no time at all

The FormBox can be used to create product casings in a number of different materials, colours and finishes

<u>See how</u> >

No more outsourcing

Make short runs of your product for quick and easy prototyping

See how >

Work with transparent materials

The FormBox helps you create optically clear parts out of transparent materials. Adding a whole new dimension to your desktop manufacturing toolbox

<u>See how</u> >

Quick, affordable custom packaging

Make short runs of your product for quick and easy prototyping

<u>See how</u> >

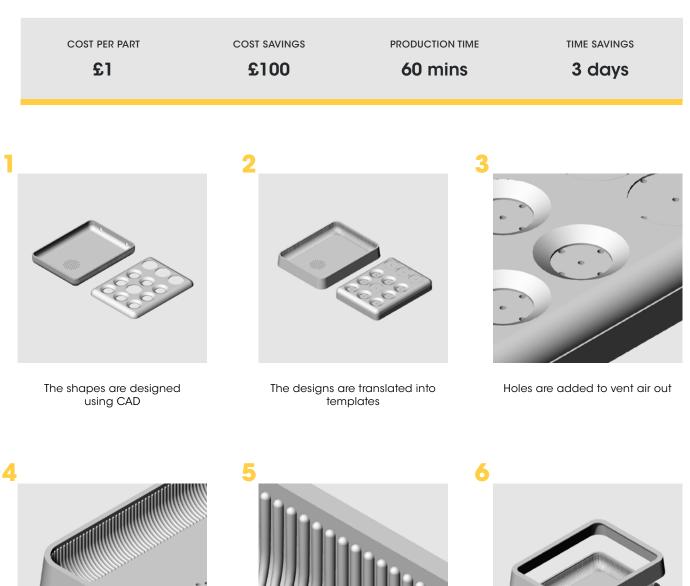
Prototype using production grade flexible materials

Use the FormBox to work with diverse materials

<u>See how</u> >

Test and learn

The FormBox's speed enables comprehensive pre-production user testing


How to guides

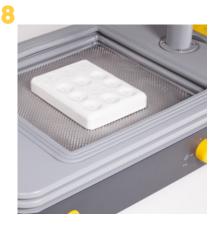
ŧ01	Make product casings
ŧ02	Cast short runs of parts in silicone and resin
ŧ03	Build custom electronics housings
ŧ04	Work with transparent materials
ŧ05	Create professional grade packaging
ŧ06	Use flexible materials
	02 03 04 05

Create product casings

How we made the synthesiser's shell

The texture on the bottom is designed so that there are no undercuts

Marks indicate where component holes on the side will be


A two-part skirt is added to the lower template creating a lapjoint at the seam line between the upper and lower shells

Create product casings

How we made the synthesiser's shell

The templates are 3D printed

Both parts are formed from a 1.00mm transparent polycarbonate sheet

A trim line on the edge shows where to cut with a scalpel

Holes for the various components are drilled out

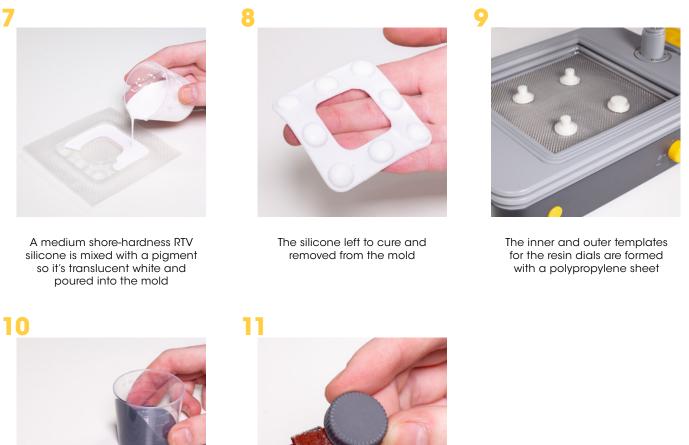
All the raw edges are sanded smooth

The plastic shells are painted with a durable enamel spray paint

Cast short runs of parts in silicone and resin

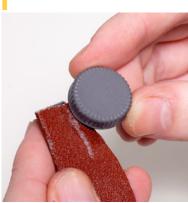
How we made the synthesiser's buttons and dials

COST PER PAR £2	t Cost savings £150	PRODUCTION TIME 1 day	time savings 5 days
1	2	3	3
The shapes are a using CAI	D a temple our deta	sign is translated into ate (we want to keep all on the inside so the needs to be a positive)	The part needs to have a space for the potentiometers, so a two-part mold is required
		ultimaker ³	

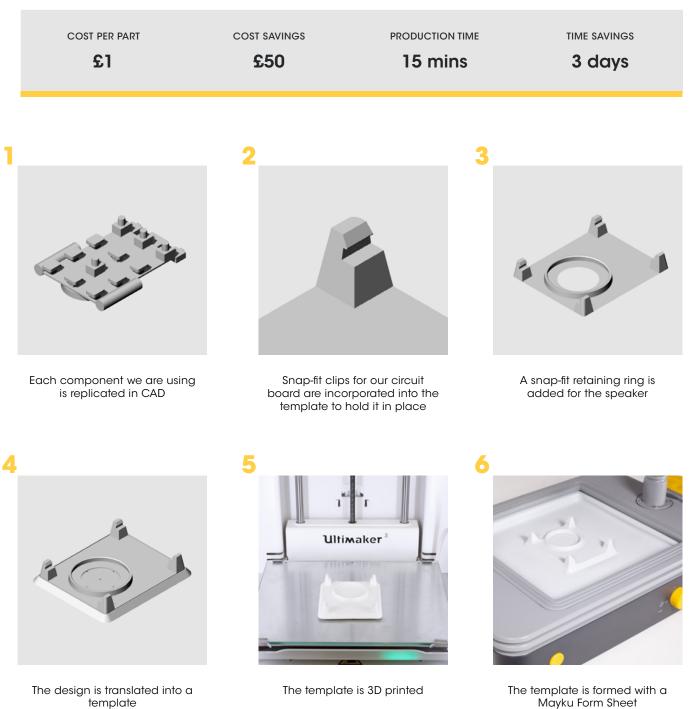

A snap-fit skirt is incorporated to ensure that the two molds remain aligned

The templates are 3D printed

The template for the silicone buttons are formed with a Mayku Cast sheet


Cast short runs of parts in silicone and resin

How we made the synthesiser's buttons and dials


A durable plaster based resin is mixed with a pigment and cast in two stages to make dials with coloured caps

Any roughness or flash on the cast parts is sanded and polished

Build custom electronics housings

How we made the synthesiser's electronic housing

Mayku Form Sheet

Build custom electronics housings

How we made the synthesiser's electronic housing

A trim line shows where to trim the part using a scalpel

The part is glued into the base of the outer shell

The circuit board and components are inserted

The silicone buttons are laid onto the switches

The dials are glued onto the potentiometers

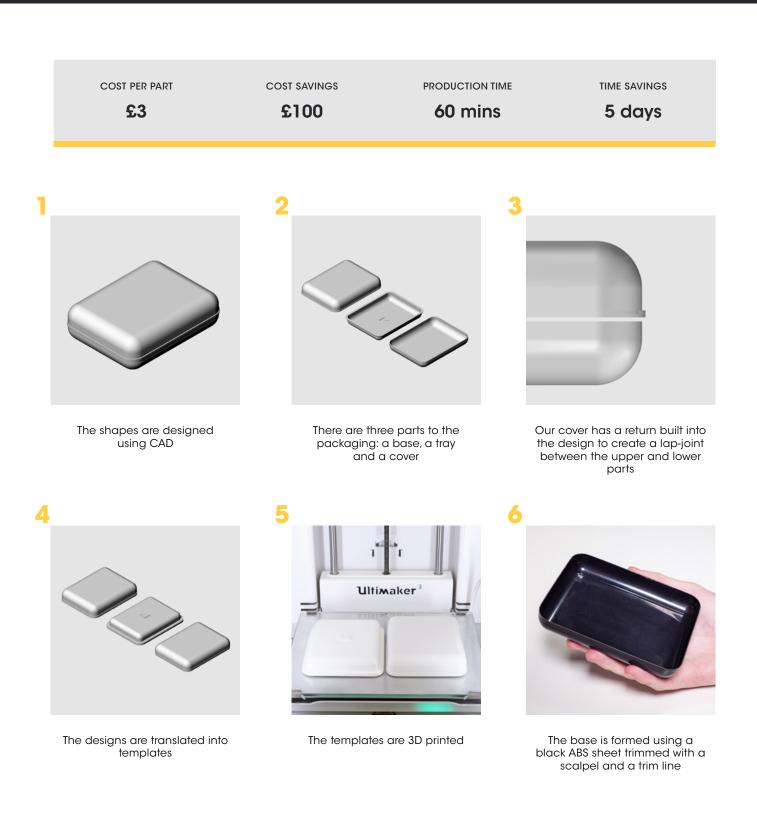
The upper shell is joined to the lower shell

Work with transparent materials

How we made the synthesiser's illuminated logo

COST PER PART	COST SAVINGS	PRODUCTION TIME	TIME SAVINGS
£1	£50	60 mins	3 days

Before painting the transparent polycarbonate outer shell, the logo is masked with self-adhesive vinyl


After the paint has dried, peel off the vinyl to reveal a transparent logo

The shell's back is spray painted with frosting to diffuse the light from the LED behind

Create professional grade packaging from your desktop

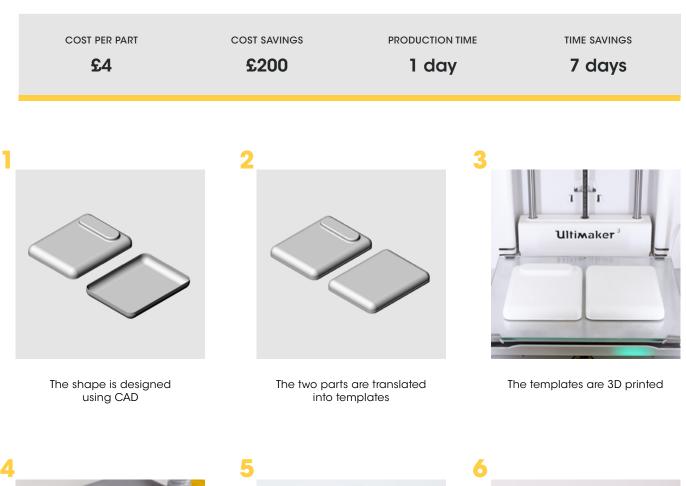
How we made the synthesiser's packaging

Create professional grade packaging from your desktop

How we made the synthesiser's packaging

The tray is made with a black flocked HIPS sheet and trimmed using a scalpel and trim line

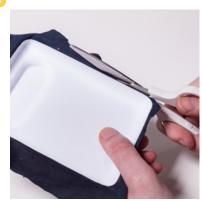
The cover is formed with a transparent PETg sheet and trimmed using a scalpel and a trim line


The tray is glued into the base and the cover is placed on top

The assembly is secured using graphics printed onto a translucent adhesive label

Using flexible materials

How we made the synthesiser's carry case

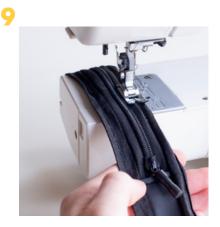


Both parts are formed from a PVC sheet and trimmed using a scalpel and a trim line

Napa leather is gently stretched around the PVC shells using a contact adhesive to bond the layers

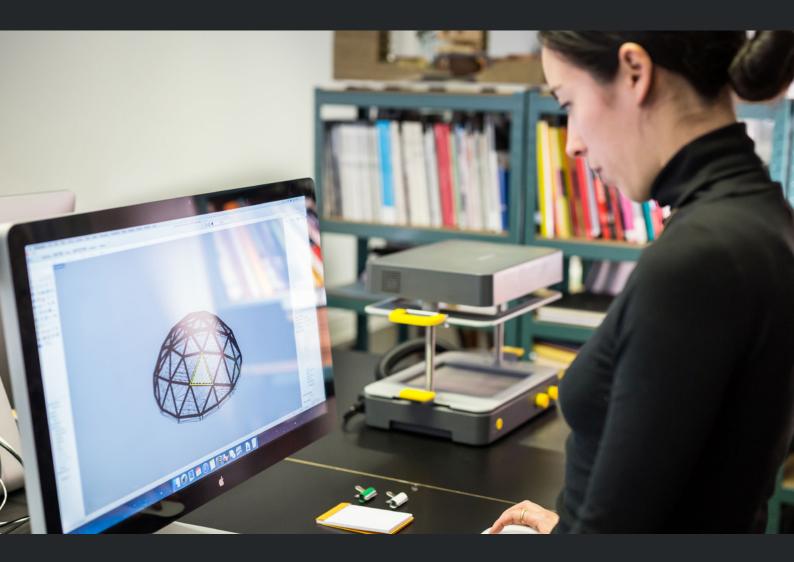
Any excess is trimmed using a pair of scissors

Using flexible materials


How we made the synthesiser's carry case

A sheet of EVA foam is formed around a slightly smaller template, this is done for both the front and back and trimmed at the seam line between the case shells

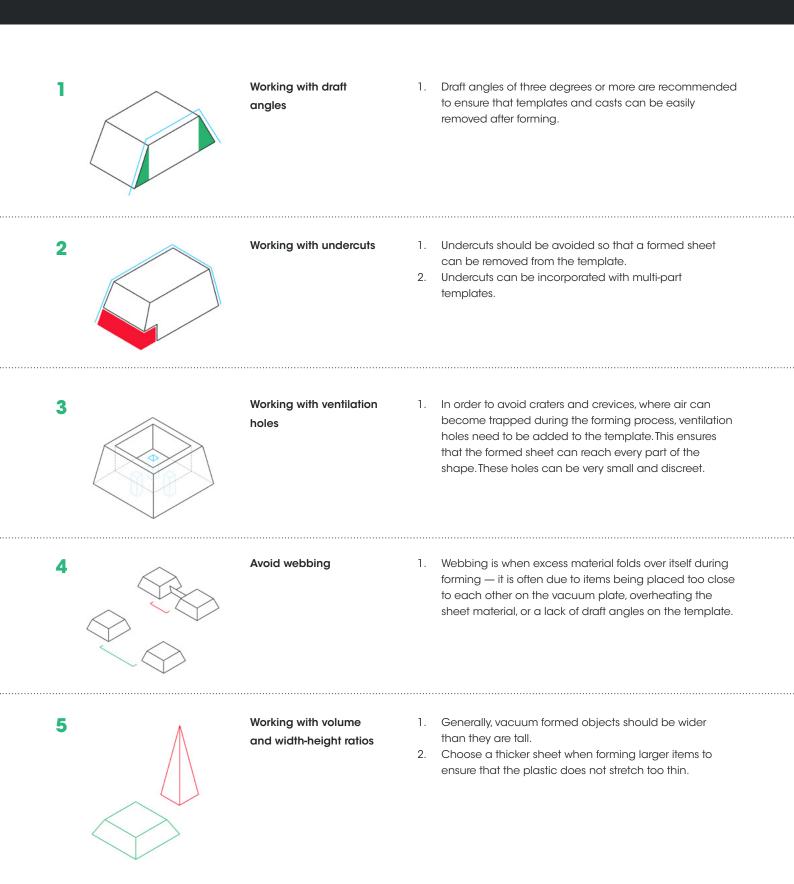
The EVA foam sheet is bonded to the inside of the PVC shells with contact adhesive



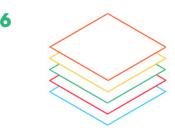
A zip is stitched into a loop with edges prepared so they join to case shells

The two halves of the case are stitched together with zip in the middle

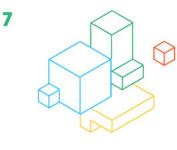
Design Considerations



In this section you'll learn which materials and specifications work with the FormBox


Design	#01	Designing for the FormBox
Design	#02	Casting with FormBox molds
Design	#03	Processing parts made with the Formbox

How to design for the FormBox

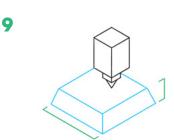

How to design for the FormBox

Compatible sheet materials

- PET
 HIPS
- 3. PLA
- 4. Polypropylene
- 5. Polycarbonate
- 6. PVC

- Kydex
 HDPE
- HDPE
 LDPE
- 10. EVA foam
- 11. TPU
- 12. ABS

Compatible template


materials

- 1. 3D-printed FDM PLA
- 2. 3D-printed FDM ABS
- 3. 3D-printed FDM Nylon
- 4. Most 3D-printed SLA materials
- 5. Most 3D-printed SLS materials
- 6. Wood
- 7. Milled and injection molded plastics such as ABS or nylon
- 8. Steel
- 9. Aluminium
- 10. Plaster
- 11. Polyurethane tooling foam
- 12. Hardened clays
- 13. Silicone
- 14. Paper and card
- 15. Toughened glass

8

Appropriate template manufacture methods

- 1. 3D printing
- 2. Milling
- 3. Hand carving
- 4. Injection molding
- 5. Laser cutting

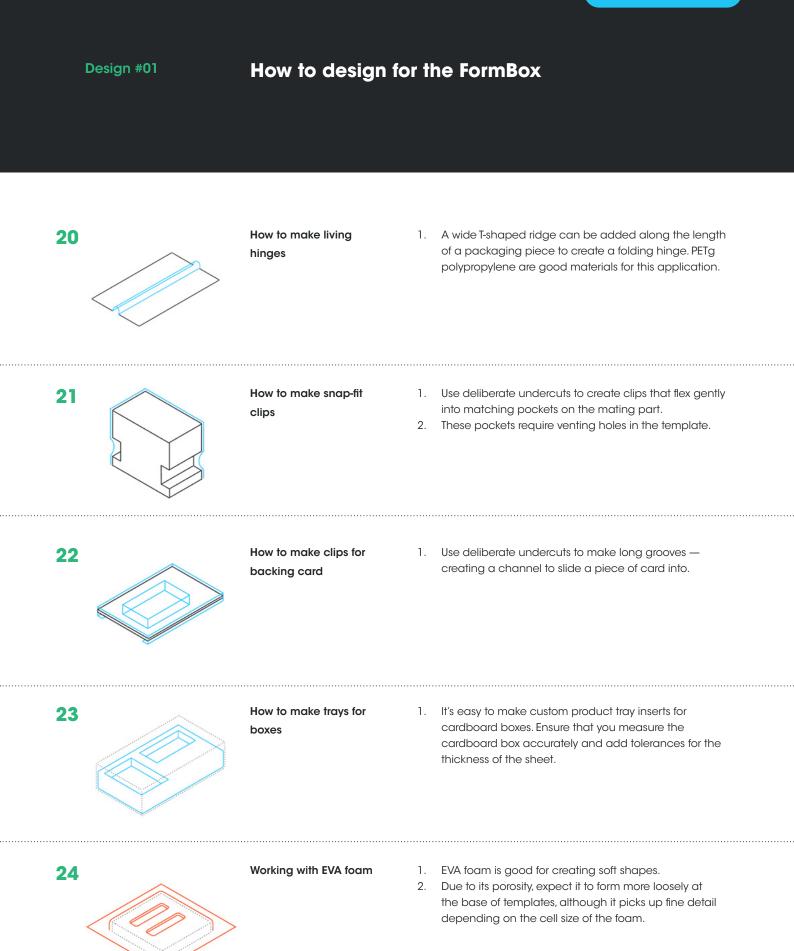
Tips for 3D printing templates for vacuum forming

- 1. FDM prints in any material benefit from three-layer plus wall thicknesses.
- 2. FDM prints in any material benefit from 40% plus infill.
- 3. FDM prints can be filled with plaster to create durable templates [leave out the bottom layer on the print].
- 4. SLA and SLS prints can be porous and can create tighter forms.

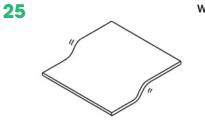
How to design for the FormBox

10	How to make a butt-joint	 Trim the edge of two pieces so that they meet end-to-end. This type of joint may require an internal brace or framework for stability.
"	How to make a push-fit joint	 Make one of the pieces slightly larger than the other at the point at which they join so that the parts hold themselves together with pressure alone.
12	How to add a return for a lap joint	 Add a step onto the border of one of the pieces to be joined. The step should be the width of the sheet used on the part that it will be mated to. If using a positive template this can be easily added with a skirt at the base of the form. When using a negative template, a two-part template lip is required to create a return without getting the form trapped in the template.
13	How to make snap-fit joints	 Use deliberate undercuts to create clips that flex gently into matching pockets on the mating part. These pockets will require venting holes in the template.
14	Adding ribs for stability	 Generally, vacuum formed objects should be wider than they are tall. Choose a thicker sheet when forming larger items to ensure that the plastic does not stretch too thin.

How to design for the FormBox


15	Adding texture to forms	1. 2. 3.	Vacuum forming picks up fine detail on various natural and synthetic textures. Sanding or sandblasting a template can transfer a matte finish to formed components. Highly polished templates create glossy forms.
16	How to engineer tolerances	1. 2.	Always take into account the thickness of the thermoform sheet when engineering tolerances into designs. Also consider any texture treatment for templates that may add or remove material from the original template dimensions, the same is true for final vacuum-formed parts.
17	How to create electronically isolated and anti-static housings	1. 2.	Plastic casings are useful to isolate electronic parts. Anti-static plastics can be used to shield components inside products or in transit.
18	Obtaining a crystal clear finish	1.	Transparent plastics such as PETg and Polycarbonate are fantastic at creating optically clear shells. Ensure templates are highly polished and blemish-free to obtain a crystal-clear finish.

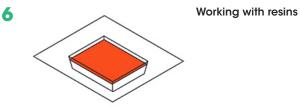
2. Formed components can be sanded and polished.


19

Making basic blister packaging

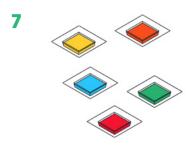
1. Simple packaging can be made by creating a clear plastic shell for a product —stapled, glued and folded around a card backing plate.

How to design for the FormBox


Working with PVC

- PVC can be flexed and manipulated without cracking and splitting — unlike most other plastics — making it useful for flexible applications.
- 2. Be cautious of overheating PVC, its chlorine content can produce toxic fumes when overheated.

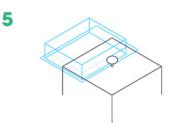
How to cast with FormBox molds


	One-part molding	 A wide variety of materials can be cast using molds made with vacuum forming. One-part molding is the simplest method — using one template, one sheet and an exposed face for the cast piece.
2	Basic two-part molding	 Two [or more] sheets can be combined to create a molded part that is enclosed on all sides, allowing for more complex cast parts.
3	Two-part molding with a snap-fit skirt	 A skirt can be added to the parts of the mold so that they join together securely, increasing stability, and reducing flash and leakage during the casting process.
4	Using sprues	 Sprue can be added to the design to improve the ease of pouring casting material into the mold.
5	Working with silicone	 Silicone has good non-stick properties with most plastics, including the sheets used for making vacuum- formed molds. These cast parts can add non-stick, food-grade heat- and chemical- resistant properties to various products. Materials such as silicone and polyurethane are suitable for over-moulding to create items with structural integrity and good ergonomics.

How to cast with FormBox molds

1. Resins are compatible with polypropylene and other sheets when used with a mold-release agent.

2. Resins can provide a wide range of finishes including crystal clear transparencies, tints, encapsulation and colour ranges.

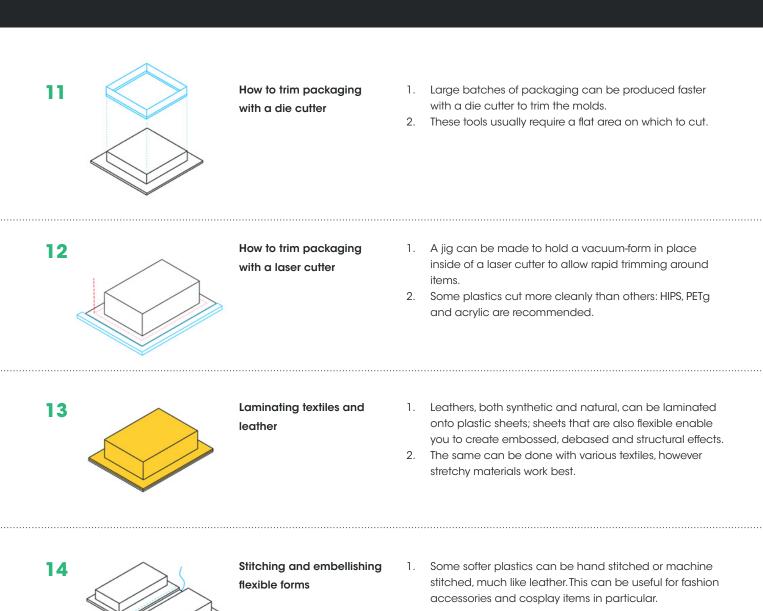


Compatible casting

materials

- 1. Silicone
- 2. Polyurethane
- 3. Epoxy resin
- 4. Polyester resin
- 5. Gypsum
- 6. Resin-modified gypsum
- 7. Concrete
- 8. Foams
- 9. Edibles
- 10. Cosmetics

Design #03 How to post process FormBox parts Cutting holes with a 1. Create a gutter around the area you wish to cut 1 2. The vacuum form will pick this up and create a groove to trim line run a scalpel along \bigotimes 2 Cutting holes with a drill 1. Mark the centre point of the hole with a dent in the template 2. The vacuum form will pick this up and create a divot to guide a drill-bit Cutting holes with 1. Create a deep crater with a sharp perimeter where your 3 hole needs to be a razor 2. This will create a bubble where the hole should be 3. You can run a blade adjacent to the perimeter of the hole to slice off the hole opening Trimming edges with a 1. Use various guides to neatly trim thinner plastics with a 4 sturdy pair of scissors by eye pair of scissors freehand

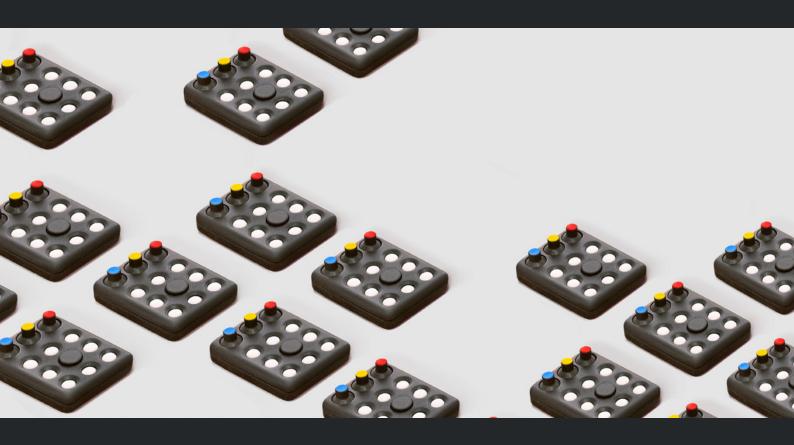

Trimming edges with a form cutter

1. Use a specialist form cutter machine to trim along the bottom of a form

How to post process FormBox parts

6	Adding colour to forms	 Thermoform sheets are available in a variety of colours Most plastics can be spray painted and airbrushed in custom colours Some sheets can be dyed for custom tints Vinyl graphics can be applied to sheets before and after forming Inkjet printed transfer paper can be laminated onto sheets before forming
7	Joining vacuum-forms to other parts	 Most adhesives are compatible with thermoform sheets. Stand-offs, brackets and trays can be easily added to product shells. Snap-fit clips can also be used to click components into place. Use deliberate undercuts to create clips that flex gently into matching pockets on the mating part. These pockets will require venting holes in the template.
8	Obtaining a frosted finish	 A frosted finish can be obtained by adding a fine texture to the template before forming: by sanding, sandblasting or brushing the surface. A frosted finish can also be added to the component after form by sanding, sandblasting, brushing or spraying the item with a frosting spray.
9	Masking transparent materials	 Both crystal clear and frosted finishes can be combined by masking off specific areas with tape or vinyl graphics.
10	How to trim packaging with a trim line	 Create a gutter along the trim line you wish to cut. The vacuum form will pick this up and create a groove to run a scalpel along or trim with a pair of scissors.

How to post process FormBox parts


Numbers

The proof is in the pudding — or in this case, the tables below.

		Cost per part	Production time	Cost savings	Time savings
	Total assembly	£15	3 days	£1000+	14 days
\checkmark	Product casing	£1	60 mins	£100	3 days
	Silicone buttons	£2	1 day	£150	5 days
	Resin knobs	£0.50	60 mins	£50	5 days
	Electronics housing	£1	15 mins	£50	3 days
\bigcirc	Polycarbonate packaging lid	£1	20 mins	£50	5 days
$\langle \diamond \rangle$	Packaging tray insert	£2	30 mins	£50	5 days
	PVC & Leather Case	£4	1 day	£200	7 days

Your own tabletop factory

The Mayku FormBox brings the means for end-to-end product development to your desktop. This machine democratises the production process: makers can now create a variety of product parts in a plethora of materials, colours and finishes quicker than before. Owning the Mayku FormBox means you can bring a physical product to market with the minimum of time and expenditure.

Buy the machine

www.mayku.me

Request a sample part

www.mayku.me/sample